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Abstract 
To be able to predict the impact of artificial intelligence (AI) on the required human competences of the future, it is first 
and foremost necessary to get an overview of what AI at all is and how it differs from human intelligence. The main goal 
of this paper is to provide such an overview to readers who are not experts in the area. The focus of the paper is on the 
similarities and differences between human and machine intelligence, since understanding that is of essential importance 
to be able to predict which human tasks and jobs are likely to be automatised by AI - and what consequences it will have. 
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1 Introduction  
The last few years have seen an explosive increase in industrial-scale applications of artificial intelligence (AI), and an 
even higher increase in the expectations of the problems and tasks that AI will be able to solve in the near future. There 
is no doubt that AI will have a profound impact on many aspects of our lives, jobs, and society as a whole. However, it is 
much less clear what exactly the impact will be. Many human cognitive tasks can seemingly be automatised by AI, but 
we risk a loss in predictability and explainability when doing so. We can not yet communicate with AI systems the way 
we communicate with fellow humans, and AI systems cannot explain their own reasoning and behaviour the way humans 
can. Even though the goal of AI is to simulate aspects of human cognition, machine intelligence is still fundamentally 
different from human intelligence, and has a rather different set of strengths and weaknesses. Some tasks that are easy for 
humans to solve have turned out to be exceedingly dificult for machines, and vice versa. 

Predicting the exact impact of AI on our future society is overwhelmingly difficult. Most predictions made about 
the future of AI in the last 60 years have turned to be wrong, independently of whether these predictions were made by 
laypersons or AI researchers (Armstrong & Sotala, 2015). This paper will not attempt to make any profound predictions 
or conjectures, but mainly focus on providing some essential insights into current AI techniques, and their strengths and 
weaknesses. Hopefully, this will then provide the reader with a clearer view of what AI is (and isn't), and which future 
perspectives of AI are the most likely. The paper will point to some of the challenges that AI methods are currently facing, 
in terms of robustness, explainability, and lack of human-level social and linguistic capabilities. These challenges of 
course at least give us an impression of the expected relative role of machines and humans in the near future. 

2 What is artificial intelligence (AI)? 
More than 60 years ago John McCarthy, the father of artificial intelligence (AI), defined the field as “the science and 
engineering of making intelligent machines, especially intelligent computer programs.” The complication of this 
definition is that we do not know exactly what intelligence is, and hence even less what it means for a computer program 
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to be intelligent. In the 1950s and 1960s, AI was expected to develop very rapidly into computers and robots with human-
level cognitive capabilities. This however did not happen, at least not yet.  

Lacking a precise definition of AI, we can still give an approximate characterisation. It is almost always about 
building machines – computers or robots – that can perform tasks that otherwise only humans have been able to, e.g. play 
chess, drive a car, do medical diagnosis, or engage in a dialogue. Furthermore, when such machines are built, AI 
researchers are almost always directly inspired by how humans solve the same tasks. It can be in terms of the machine 
directly trying to mimic some of the neurological processes of the human brain (see Connectionist AI in Section 7 below); 
or it can be via a more abstract model of human problem solving, e.g. an approximate model of the reasoning steps 
involved in a human deciding the next move in a game of chess (see Symbolic AI in Section 6 below). 

AI today is a wide range of different techniques for simulating different aspects of human cognition. Computers 
can play chess, drive cars, recognise skin diseases and engage in dialogues, but all these applications are based on different 
techniques within AI, and require individual programming tailored for the specific application at hand. This makes current 
AI very different from human beings solving similar tasks. Human beings learn to master all of these different tasks 
during their lifetime without having to be preprogrammed specifically to solve them. One of the important emerging 
trends in AI is Artificial General Intelligence (AGI) (Gorttzel & Pennachin, 2007), where the goal is to make AI systems 
more human-like by giving them the ability to learn a range of different skills without having been specifically 
preprogrammed for them. However, the success of such systems is still rather limited. 

3 Characteristics of current AI 
AI systems tend to be tailored to specific types of applications, and often new types of applications requires new methods 
to be developed (or existing methods to be combined in a novel way). Developing a robust driverless car is not just about 
taking an existing AI system down from the shelf, plug it into the car and then let itself figure out how to drive. Given 
that AI systems need to be tailored to specific applications, the complexity of building such a system depends crucially 
on how well-defined and clearly delimited the problem to be solved is. As a rather robust rule of thumb, the more well-
defined and clearly delimited a problem is, the easier it is to make AI that can solve it. With this in mind, it is not too 
surprising that already in 1997 it was possible to build a computer program, IBM Deep Blue, that was able to become 
world chess champion. Chess is extremely well-defined and clearly delimited: there is only a very few and strict rules to 
obey, and there is a very precisely formulated goal to achieve. For a human being, chess has an overwhelming 
combinatorial complexity in terms of possible move sequences, but modern computers are not easily overwhelmed by the 
need to consider an enormous number of options. Deep Blue could compute 200 million chess moves per second. 
 
Figure 1: For many types of tasks, the axis of difficulty for machines is opposite the one for humans. 
 

 
 
Modern computers are however much more easily overwhelmed by problems in which the rules or the goal – or 

both – are less clearly formulated and delimited. One such example is driverless cars. As in chess, there are also rules to 
obey in traffic, but there are many more rules than in chess, and they are much less formally specifiable. It is even more 
complicated for computers to successfully small talk with a human for a few minutes over a cup of coffee. Chatbots are 
computer systems for engaging in dialogue with humans, and the dialogue can either be in writing or through a voice 
interface. Building a chatbot that can engage successfully in small talk with humans is exceptionally difficult, as the rules 
of such dialogues are even much less clear than the rules in traffic. This is also why a lot of the chatbot technology that 
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was in the early 2010s implemented on web pages to help customers, e.g. by IKEA, Scandinavian Airlines and Deutsche 
Post, has now been taken out of use. There seems to be a new wave of chatbots arising here on the edge to the 2020s, and 
they are probably better, but it does not change the fact that general natural language dialogue is everything but well-
defined and clearly delimited, and hence extremely hard to bring to human level on a computer. 

It is interesting to compare the difficulty for computers on the three tasks mentioned above – playing chess, driving 
cars, and chatting – with the difficulty for humans. For most humans, the relative difficulty of the three tasks is opposite 
the one for computers: It is easier for most humans to engage in small talk for a few minutes than it is to drive a car safely 
through downtown Rome on a Friday afternoon, which again is easier than becoming world chess champion. Figure 1 
illustrates this. The fact that the two axes of difficulty are opposite one another illustrates that intelligence is not just one 
thing, and that different types of intelligence cannot always be compared along the same axis. Many people seem to have 
the view that computers are becoming more and more intelligent, and that it is just a matter of time before they become 
more intelligent than us humans. But that view assumes that we can directly compare human and machine intelligence on 
a single axis of intelligence. The figure illustrates that it might not be as simple as that. Humans and machines currently 
have very different strengths and weaknesses, and there is no simple way of comparing their “level of intelligence”. 
Computers will forever be better than humans at board games with high combinatorial complexity, but no matter how 
explosive the development of AI is going to be, it is conceivable that we humans will forever be better natural language 
users (not the least since natural language was invented by us, and developed in a way that is to a large extend dependent 
on our culture, our brains and our bodies (Lakoff, 2006)). 
 
 

4 Human-machine dualism 
The difference between human and current level machine intelligence is so large that it is probably more relevant to talk 
about a duality. We humans have a very flexible intelligence, are good at abstract thinking and conceptualising the world. 
We are often good at solving problems that are not very clearly delimited and well-structured (but where the solutions do 
not have to be either). Conversely, machines are primarily good at clearly delimited and well-structured problems, but 
can then also provide solutions that are very precise and well-structured. They are much less competent at abstract thinking 
and conceptualising the world, though a lot of research is invested in developing AI systems that have these competences 
as well. 

The human-machine duality can be illustrated by the case of the IBM Watson system that was originally developed 
for playing the game of Jeopardy (Ferrucci, 2012). Jeopardy is about answering questions concerning trivia knowledge, 
which is not a particularly well-defined and clearly delimited problem, but still much more well-defined than general 
dialogues (even when those dialogue are just small talk about much more down-to-earth subjects than considered in 
professional Jeopardy). In 2011, IBM Watson became (unoficial) world-champion in Jeopardy. It didn't do so by being 
better at understanding the questions, but by compensating somewhere else: The system had 200 million pages of text in 
memory and could process 1 million books per second. This is of course far beyond what any human can do. The point 
here is that humans are actually much better at understanding questions and finding answers from relatively small amounts 
of data (the small amounts we can keep in our brains), but computers can in some cases compensate by having access to 
enormous amounts of data and being able to process that data with exceptional speed. And in some cases, as with Watson, 
they can compensate so well that they actually outperform humans on certain tasks.  

Roughly speaking, one can consider problem solving abilities to be a combination of 1) an ability to extract 
information from data (intuition, abstraction, conceptualisation), and 2) an ability to process data quickly (search). 
Humans are much better at 1 than 2, and for computers it is opposite. In cases where the primary task is to extract 
information from data, a deficiency in 1 can often be compensated by a sufficient corresponding increase in 2. This is 
exactly what we see with Watson. If the answer to a question is well hidden in a piece of text, Watson is not likely to find 
it. However, it compensates by having access to an enormous text library that it can browse through in seconds, and then 
it will probably find another source, where it is more trivial to extract the answer. When humans look for answers in texts, 
we can only read extremely slow compared to computers, but we have a much deeper understanding of what we read, and 
are very good at finding the deeper meanings and the well-hidden answers. 

One of the important conclusions of the Watson example is that even when we succeed in constructing a computer 
program that achieve above human level on a certain task, it doesn't at all imply that it solves it in the same way as a 
human, and therefore we cannot use it to conclude anything about the relative intelligence between humans and machines. 
In contrast to Watson, humans can also answer questions that nobody has asked before, e.g. whether a crocodile can run 
a steeplechase (Levesque, 2014). In order to answer such a question, we need our human ability to create mental models 
of the content of the question, that is, to picture the poor crocodile with its extremely short legs trying to jump a high 
barrier. We use our rich existing models of the world to answer questions, whereas Watson simply tries to look the 
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question up in its enormous library, and if the answer is not there because nobody considered that question before, it has 
no chance of answering. 

5 Collaboration between humans and machines 
Machines and humans will probably never be good at exactly the same things, so the ideal future perspective of AI is to 
ensure efficient collaboration between humans and AI systems, so we can each do what we are best at, and let the other 
support us for the things we are less good at. A nice example of this is the use of current IBM Watson technology to create 
an online chatbot for teaching assistance in the AI course at Georgia Tech (Goel & Polepeddi, 2016). The chatbot can 
answer simple questions, where the answer can easily be looked up in the existing course material. When a student asked 
whether they should be aiming for 1000 or 2000 words in an essay, the chatbot answered “There isn’t a word limit, but 
we will grade on both depth and succinctness. It's important to explain your design in enough detail”. The student then 
asked a follow-up question: “Can you please elaborate on it’s important to explain your design in enough detail. What 
kind of design are you referring to?” That question was too hard for the chatbot, but the chatbot then passed the question 
on to a human who could elaborate. Many questions students ask are quite well-defined and easy to answer, and are the 
same year after year. Such questions can easily be answered by chatbots, and can save time that human teaching assistants 
would otherwise have to spend on answering the same question over and over again, year after year. New questions or 
questions where the answer cannot easily be looked up still have to be answered by humans. 

In order to achieve efficient collaboration between machines and humans in general, it is required that both have 
a decent level of social intelligence, for instance that both have the ability to take the perspective of the other and to 
explain itself in a way that is comprehensible to the other. As with natural language comprehension, social intelligence is 
unfortunately one of the very hard problems in AI. For both of these cognitive abilities, one of the main challenges is that 
we still do not have a suficiently deep and precise understanding of how these cognitive abilities work in humans, and 
therefore we do not yet have any suficiently precise models that we can implement in machines. 
 
Figure 2: Symbolic and connectionist AI have opposite approaches to simulating aspects of human 
cognition. 

 
 

6 Symbolic AI 
Since the 1960s, AI research has essentially been divided into two competing paradigms, the symbolic paradigm and the 
connectionist paradigm (Hoffmann, 1998). These two paradigms have completely opposite approaches to simulating 
aspects of human cognition. The symbolic paradigm follows a top-down approach by trying to directly simulate the 
highest levels of human cognition, our linguistic (symbolic), conscious reasoning. In this paradigm, one tries to build AI 
systems that have an explicitly represented language to reason about the world, and for instance use this to do logical 
inference or plan a sequence of actions to achieve a certain goal. AI within the symbolic paradigm is behind systems such 
as chess computers, Amazon warehouse robots and intelligent personal assistants such as Siri on iPhone and Google Now. 
The advantage of symbolic AI is that the systems constructed can be made robust, predictable and explainable. If a chess 
computer always makes a bad move in a certain situation, we can inspect the code and understand why, and hence improve 
it. The drawback of symbolic AI is, though, that systems within this paradigm tend to have strictly delimited abilities. 
They normally do not learn from their experience, and a chess computer can play only chess, not even tic-tac-toe (though 
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the search methods on which it is build could be adapted to other games). Some of the central areas of AI within the 
symbolic paradigm are problem-solving by searching, knowledge representation and automated planning. Most of 
symbolic AI is based on discrete mathematics, that is, areas such as logic, combinatorics, graph theory and theory of 
algorithms. 

7 Connectionist AI 
Arguably, one of the main landmarks of human intelligence is our flexible intelligence and our ability to learn. We are 
not born with the ability to play tic-tac-toe or chess but learn it during our lifetime. We are also not born knowing the 
difference between a table and a chair, and the words used to name these objects, but learn it when we are small. If we 
want artificial intelligence systems to share these abilities with humans, we have to consider the area of machine learning 
within AI. Machine learning is a very broad term that covers any AI algorithm that does not have a static behaviour, but 
can learn from its experience. It could e.g. be algorithms with the ability to learn to distinguish objects in the physical 
world, with the ability to learn better strategies in chess, or with the ability to learn the rules of new games. Some of the 
techniques of machine learning belong to the symbolic paradigm, but the currently most prominent ones belong to the 
connectionist paradigm. The connectionist paradigm is essentially constituted by AI techniques based on (artificial) neural 
networks (ANNs). In artificial neural networks, one tries to simulate the atomic processes of the human brain: the 
functioning of the individual neurons and neuron connections. The connectionist approach is behind image recognition 
software, e.g. for recognising skin diseases or as used by Instagram to decide whether a picture contains unacceptable 
nudity and should hence be blocked. The advantage of the connectionist approach is that it is possible to construct systems 
that have a more exible intelligence and can learn from experience. The neural network employed at Instagram has not 
been programmed with a model of what unacceptable nudity is, but has simply been trained on a very large set of pictures 
that were either labelled as “acceptable” or “unacceptable”. Eventually, the system has itself learned to recognise the 
patterns of unacceptable content. It would never be possible to do the same with symbolic AI: There is no way to give a 
suficiently precise linguistic or symbolic definition of what “unacceptable nudity” is. Similarly, it would be very hard to 
linguistically or symbolically define the difference between a chair and a table, but neural networks can be trained to 
relatively robustly make the distinction.  
 
Figure 3: Two pictures that were blocked by the image recognition system of Instagram and claimed by the 
algorithm to contain unacceptable nudity or pornographic content.  
 

 
 
 

The drawback of the connectionist approach is, however, that it can never be 100% predictable, error-free or 
explainable. The systems built according to this approach are based on statistical learning from experience. When you do 
statistical learning from experience, your ability to correctly categorise new objects, for instance recognise certain types 
of pictures, gradually improves but can never become 100% precise. An example of this is the two pictures in Figure 3. 
They don’t seem to bear many similarities, and they seem to be fairly acceptable pictures from everyday situations. 
However, they were both blocked by the image recognition system of Instagram (in 2015 and 2019, respectively), and 
both were claimed by the system to contain unacceptable nudity. There is currently no way of knowing exactly why these 
pictures were labelled as unacceptable, as the neural networks train an implicit model with millions of neuron weights, 
and it is the combination of all these neuron weights that decide the classification the network makes. There is also no 
simple way of telling the neural network that easter simnel cakes like the one on the left in Figure 3 are not examples of 
nudity. The only way to try avoiding such misclassifications in the future is to provide the algorithm with more labelled 
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pictures that it can train on – and then hope for the best. This is clearly very different than the situation in symbolic AI, 
where models are explicit rather than implicit, and can hence easily be understood and modified. Recently, there has been 
an increased interest in explainability also in the connectionist approach, e.g. image recognition systems that can point 
out the parts of a picture that make them suggest a given classification (Rebeiro et al., 2016). This can help us understand 
how pictures such as the two of Figure 3 end up being labelled as containing unacceptable nudity, but it does not in itself 
guarantee against misclassification, of course. There is a growing consensus in AI research that transparency and 
explainability are of central importance, so it is very likely that the coming years will see significant breakthroughs within 
these aspects, both in symbolic and connectionist AI.  

8 Symbolic versus connectionist AI 
Whereas symbolic AI, as mentioned above, is mainly based on discrete mathematics, the connectionist approach is mainly 
based on linear algebra and mathematical analysis. Hence, the paradigm distinction in AI is more or less matched with a 
corresponding paradigm distinction in the underlying mathematics used for the techniques of the two paradigms. As also 
mentioned, an essential difference between the paradigms is that symbolic AI is based on creating explicit (symbolic) 
models, whereas the connectionist approach is based on learning implicit models. This difference roughly corresponds to 
the difference between trying to predict a ballistic trajectory using the laws of mechanics and aerodynamics (explicit 
model) versus simply trying to learn to make such predictions from observing a high number of trajectories without 
necessarily creating any explicit model of the observed phenomena. When humans throw snowballs, there is no doubt 
that we use some kind of learned implicit model to predict where the snowball will land, which is consistent with the 
connectionist approach. However, when we play a game of chess or plan a dinner party, there is equally no doubt that we 
use explicit symbolic (linguistic) models to reason about our possible action sequences, which is consistent with the 
symbolic approach. Hence it seems that human problem solving combines implicit and explicit models, and that certain 
aspects of problem solving are closest to the connectionist approach, whereas others are closest to the symbolic approach. 
Probably for this reason, the last few years have seen a high increase in attempts at constructing AI systems that combine 
the symbolic and the connectionist approaches, with some of the notable examples being Google DeepMind building a 
system that taught itself to play a wide range of old Atari arcade games (Mnih et al., 2015) as well as a system achieving 
world-class level in the board game Go (Silver et al., 2016). Connectionist AI is mainly about simulating aspects of our 
perception and fast heuristic assessments (intuition), whereas symbolic AI is mainly about simulating aspects of our 
higher cognition (conscious reflection and reasoning). Fully autonomous AI systems like driverless cars or general-
purpose household robots of course need both. 

9 Trust and explainability in AI 
In AI, it seems to be hard to get what we could otherwise reasonably expect. We would like AI systems to be robust, 
predictable and explainable, which would push us towards symbolic AI. However, we would also like AI systems to be 
flexible and learn from experience, which would push us towards connectionist AI instead. There seems to be a 
fundamental and unavoidable trade-off involved: the more intelligent, flexible and easily trained we want a system to be, 
the less we have control over the system and the less we can guarantee it to behave in the intended way. This implies that 
not all demands for computer software and robots can be met by simply turning up the level of intelligence and flexibility 
of those systems. For many types of system, for instance database systems and e-voting systems, we still want to be able 
to prove that they have and will always maintain the intended behavioural properties.  

If an AI system is not 100% error-free and predictable, how can we trust its decisions? We have to look at what 
trust in such systems is even supposed to mean. Do we trust the decisions of an AI system when 1) it never makes 
mistakes?; or, when 2) it almost never makes mistakes?; or, when 3) it most often doesn't make mistakes, but when it 
does, it has an acceptable and explainable reason for doing so? If we wish to employ AI systems that use the connectionist 
approach, we can never have 1. And we need such connectionist methods for perception tasks, for instance in driverless 
cars that have to recognise objects and other road users in their environment. If we cannot have flawless AI, we of course 
want it to make as few errors as possible, but that is not all. Suppose you can choose between two general practitioners: 
one that almost never makes mistakes, but when she does, she cannot at all explain why she did it, and cannot give any 
reasonable guarantee that she won’t do it again. The other general practitioner makes a few more mistakes, but when she 
does, she can explain in a comprehensible way why it happened, and in realising her mistake, normally she will learn 
from it and not repeat it. If these general practitioners were AI systems, the first would be of type 2 above, and the second 
would be of type 3. Most people would probably prefer general practitioners – and AI systems – of type 3 over type 2. 
Trust is not only about statistical precision, but also about whether the person or system you engage with can explain 
itself and thereby regain your trust after having made an error. Currently, AI systems based on the connectionist approach 
are of type 2, as they cannot explain their decisions and since, as earlier mentioned, we cannot in general inspect and 
understand their learned implicit models. 
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This creates a big challenge in AI that many researchers are today occupied with. As they write in the One Hundred 
Year Study on AI by Stanford University: “The [AI systems] should be designed to enable people to understand [them] 
successfully, participate in their use, and build their trust” and later “AI technologies already pervade our lives. As they 
become a central force in society, the field is shifting from simply building systems that are intelligent to building 
intelligent systems that are human-aware and trustworthy” (Stone et al., 2016). The problem is then just how to develop 
such AI systems that are transparent, explainable and trustworthy? A key challenge is that connectionist AI is naturally 
opaque. Symbolic AI, on the other hand, is naturally transparent, but cannot in itself solve all the problems in AI we wish 
to solve. Therefore, the best current bet in order to achieve AI systems that are more transparent and explainable (and 
hence more trustworthy) is to combine symbolic and connectionist methods. We need to give them the ability to learn 
from experience, including statistically based learning, but we also need to equip them with an explicit, symbolic language 
that they can use to explain their models and decisions. This is what humans can do, but in this ability we are currently 
unique in the universe. 

An often-stated mantra in the big data revolution is that we only need to focus on the “what” and not the “why” 
(Mayer-Schönberger & Kenneth, 2013). The point made is that if a company wants to use algorithms for instance to 
predict what items customers are likely to buy next month, the company doesn't need to know why, but just that the 
customers are going to buy those items. However, that kind of mantra is heavily challenged when such algorithms are 
used e.g. to decide whether bank customers can get a loan or not, or to decide whether an accused person should go to jail 
or not. Bank customers are in their good right to expect to receive an explanation of the decision made, but this is what 
many of the algorithms currently used can’t give. Even if we don’t expect an explanation, the algorithms based on 
statistical learning has another challenge. Suppose a statistical learning algorithm for credit scoring has been trained on 
historical customer data. If, historically, all bad customers shared the same last digit of their phone number, and no good 
customers had that number, the algorithm would most likely give a very low scoring to any new customer with that last 
digit. The point is that the algorithm can only look for correlations in the data, but have no way of assessing whether those 
correlations signify causal relationships. Most humans would know that there can’t reasonably be a causal relationship 
between phone numbers and whether you’re a good or bad bank customer, so even if we observed that kind of correlation, 
we would not let it affect our decisions. But algorithms don’t have rich models of the world that tell them which 
correlations are likely to signify causal relationships, and hence they act on correlations alone, no matter whether there is 
an underlying causal relationship or not. Finally, if the bank at some point decides to change some of their principles for 
credit scoring, then the existing algorithm and all the data it was trained on will have become useless. You cannot tell the 
algorithm to adjust its principles, because there is no explicit model to adjust. In that case, the bank would have to start 
all over, and would first have to manually create a new data set of customer scorings to train the new algorithm. 

10 The impact of AI on the human competences of the future 
Even though current level AI still has many challenges, there is no doubt that we will see more and more tasks being 
successfully automated by computers and robots in the future. Hence it makes sense to consider what kind of human 
competences might still be needed in the future. We will need the following competences: 

1. Competences in seeing the potential and selecting the tasks to be automatised by AI, and, equally important, 
deselecting the tasks that cannot reasonably be automatised. 

2. Competences in implementing AI techniques for the tasks selected under 1. 
3. Competences to operate and collaborate with AI systems. 
4. Competences in areas that cannot be automatised. 

No doubt, most of us will mainly be affected by 3 and 4. To operate and collaborate with AI systems, one does not 
necessarily need a deep understanding of how the systems work, but given the challenges of AI stated above, it is probably 
quite important that users understand the scope and limitations of such systems. If a general practitioner uses a medical 
diagnosis system, she has to be aware that the system cannot be expected to be flawless, and can therefore not be blindly 
trusted. Concerning 4, we already noted that there are certain aspects of human cognition that have so far proven 
exceptionally hard to simulate on a computer, most notably linguistic and social intelligence. Since almost all humans 
have jobs that require both linguistic and social intelligence (for communication and collaboration), not many jobs can be 
expected to be replace one-to-one by AI in the foreseeable future. This doesn’t imply that AI cannot lead to unemployment 
in certain sectors, it just means that many of the tasks most of us carry out today still have to be carried out by humans in 
the future.  

As stated above, the tasks that are most easy to automatise are the most well-defined and clearly delimited ones. 
Those also tend to be the most routine and repetitive among our tasks. So, when trying to predict what human competences 
are needed in the future, we need to think about which of our tasks are least well-defined, least clearly delimited and least 
repetitive. Since linguistic and social intelligence are very hard problems for AI, these might become the most important 
human competences of the future, even for employees in technical areas like engineering. Indeed, an Australian study of 
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the impact of automatisation on the required competences of skilled and technical workers concluded that the highest 
rated competences were communication, social empathy and the ability to critically evaluate digital data sources (Reeson 
et al, 2016). In a case study on automation by the Danish SIRI Commission, a main conclusion was that to utilise the full  
potential of automation, the most important thing is to make the employees feel safe, not fearing the technology and not 
fearing their jobs (Shapiro, 2018). This is not about any specific skill set that the employees should have, but rather about 
their attitudes towards the AI systems. It also proves to illustrate the importance of making AI systems explainable, 
human-aware and trustworthy, since otherwise there is bound to be significant resistance against the use of such systems. 

In addition to linguistic and social intelligence, currently humans are much better at adopting to changing norms 
and principles, cf. the example about credit scoring given above. And when it comes to creatively suggesting changes to 
norms and principles, we are even better. Most algorithms will at best learn and retain existing norms and principles. So, 
when it comes to developing our culture and decide how we want our future society, this is something that should still be 
designed and decided by humans. 
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